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We determined the laws that govern the change in hydraulic resistance in viscous incompressible liquid f low 

between parallel permeable and moving walls. The laws are o f  great practical interest. 

We consider a viscous incompressible liquid flow between parallel permeable walls moving in their planes 

with prescribed constant velocities. The study and determination of the regularities of such motions are of both 

theoretical and great practical interest because of various technical applications: control of a boundary layer, 

variation of the flow velocity in tubes by injection or suction of liquid, study of the specific features of rivulets 
flowing in soil, etc. 

1. We assume the liquid motion to be laminar, stationary, plane-parallel, and isothermal, with no body 

forces. The permeable walls of the channel move in their planes in the direction of the 0x axis with constant 

velocities Ul and U2. There is also a forced flow in the channel that has a plane uniform velocity profile at the inlet 

(Fig. 1). The initial equations of liquid motion are considered to be the following equations obtained from the 
Navier-Stokes system [1 ]: 

Ov x I dp 02Vx d p _  dv x 0 ~  (1 1) 
U . . . .  + v - -  - - - 0  + = 0 .  

Ox p Ox Oy 2 ' Oy ' - ~ x  Oy 

Assuming the coordinate origin to be located on the middle plane of the channel, the boundary conditions 
of the problem can be written in the form: 

if x = 0 ,  lYl < h ,  then V x = U ,  P = P i n ;  

if x > 0 ,  y = h ,  then v x =  U 1, vy = k (p - Pex) ; (1.2) 

if x > 0 ,  y = - h ,  then v x = U 2 , Vy  = - k ( P  - P e x )  �9 

When p > Pex, there is liquid suction; when p < Pex, there is injection of liquid. With allowance for the new 
variables 

x y v x - U Vy P - Pin 
z = - ,  r/ = - ,  u = - - ,  v = - - ,  p - - -  (1.3) 

h h U U pU 2 

system of Eqs. (1.1) and boundary conditions (1.2) can be rewritten in the form 

Ou _ OP + ~ __O2u __OP = 0 ,  __Ou +--0v = 0 ,  (1.4) 

Oz Oz Re O~ 2 ' Or 1 Oz Or 1 

where Re = U h / v  is the Reynolds number; 
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Fig. 1. Scheme of problem statement. 

if z = 0 ,  then u = 0 ,  P = 0 ;  

U 1 - U 
if r / = l ,  z > 0 ,  then u -  U , v = a (P  + b) , 

if r/ = -  1, z > O ,  then u =  
U 2 - U 

U 
, v=-a (p+b) ,  

where a = kpu; b = (Pin - Pex)/P U2- 
2. Applying the Laplace integral transform to Eqs. (1.4) and boundary conditions (1.5), we obtain 

1 d 2~  ; t ~ = 2 P ,  O._P_P = 0 ,  d~ + j l ~ = O ,  
Re dr/2 Or/ dr/ 

where 

o o  

= u exp ( -  ;tz) d z ,  "fi = f P exp ( -  2z) d z ,  
o 0 

= 7 vexp ( -  ;tz) d z ,  
0 

and ~[ is the transformation parameter; 

if r / =  1, z > 0 ,  then u - - - - - -U- - -  2-' ~ = a  + ; 

,>0 :) , , ~ ~ - ,  ~ = - a  + . 

The solutions of system of equations (2.1) subject to boundary conditions (2.2) are 

ch/sr/ [B r - f )  - 2M~ ] ~ =  (v~  - u 2 ) s h / s r / +  _ ~  , 

22 ch/5 (t5 th/5 - t52 +/51) 22v sh/5 

(1.5) 

(2.1) 

(2.2) 

(2.3) 

= _ B/5 th /5  + 2b/51 

2;t (t5 th /5  - f12 + / 5 1 ) '  

(2.4) 
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= (ul - u2) (ch 3 - ch P'7) _ sh ~ [a (~i - pz) _ 2~ I + a'ZV, (2.S) 

245U sh fl 2~ ch fl (fl th fl - f12 + ill) 

where 

B _ 
U 1 + U 2 

U 2 ;  fll = a R e ;  f l 2 = R R e .  

Making the inverse Laplace transformation and passing to the former variables by formulas (1.3), for the 
unknown functions Vx, vy, and p we finally obtain 

.1-.2 ( -  I) n sin :~ny/h nZ~2x 
Vx = ~r e x p  - ~ - ; Z " ,  + 

t t = l  

+U ~ Am(1  
r n = l  

ch vr-2-t Re y/h)  
+B IU  1 -  ch~/-2 I R e  ) exp(21x/h  ) +  

cos, :/ /+/"' / '  
cosym J exp - R e h }  + T  + + - ~ - -  1 -  , (2.6) 

v 2  - tJl ~ ( -  1)" cos - 1 - 
Re n = l  

- B'U~I - sh ~/2-1"Re ) exp + Any m - - - - -  exp - , 
Rem=l  sin?m ) R e h )  

( 2 )  
P = P e x - B I p  U2exp(AIx/h)  - p U  2 ~ A mexp - Ymx 

m=l Re h] " 
( 2 . 8 )  

Here 

fll ( B - 2 b ) - 2 B R e  B7 2 + f l l ( B - 2 b )  
= ; A m =  4 2 2 ; 

BI  (h I Re) 2 - 2fll/~ 1 Re + fl~ + fll Ym + 2fllYm + fll + ~1 

21 is the value corresponding to the two real roots of the equation th ~ -- ~ - aRe/vT~;~--6, and 7m are the 

real roots of the equation tan 7 = Y + aRe/7. 
Substituting the first two terms of the expansion tan fl = fl - 1/3fl 3 into Eqs. (2.3)-(2.5) and performing 

all the mathematical computations, we obtain the values of the inverse transforms at a sufficient distance from the 
entrance: 

3.( 
Vx| = - -  1 - 

4 h 2 
(B - 2b) sh )txx/h - B ch )t2x/h 1 
22 ] 

+ m 
U 1 - U 2 

2h 
U! + U 2 y +  

2 

+ 

(2.9) 
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Fig. 2. Change in the longitudinal velocity component along the length and 

over the height in the initial section of the channel. Vx, m/sec.  

vY~176 4 3h 3 - [kpU (B - 2b) ch22x/h - B;t 2 sh22x /h] ,  (2.10) 

3B~U . pU 2 (B - 2b) (2.11) 
P~ = Pex + 2;t2 h s n 2 2 x / h  - 2 ch 22x/h ,  

where 22 = 3~k/h --- 3 a / R e  = 212. 

We will calculate the length of the percolation region (/), i.e., the region of the channel over which the 

internal pressure of the liquid (p) is larger than the external one (Pex). Assuming poo to be equal to Pex in Eq. 
(2.10), we obtain for length I the following approximate value: 

h U (B - 2b) 22h (2.12) 
l = r2 arcth 3By 

For a viscous liquid flow in tubes of great practical value is the coefficient of hydraulic resistance, which 

in the case of immovable impenetrable walls depends only on the dissipation of the mechanical energy of the liquid 
due to the work done by internal friction forces. Usually this dependence is determined by the formula 

OX --  - -  ~ p ean 1 (2 .13 )  
2h" 

In the case of moving and permeable walls, the hydraulic resistance coefficient is connected to the external 
(with respect to the liquid) friction forces; therefore, it can take any values (zero and even negative ones). In the 
case of moving walls, the value of ~ was obtained by us in [2 ]. 

To determine the coefficient ~ for a developed flow of a viscous liquid in a channel with moving and 
permeable walls, we determine Op/Ox from Eq. (2.8): 

oxOP BI2 l h  pU2 exp + Re h - Am_ m exp - 7rn ~ �9 
m=l  

Equations (2.13) and (2.14) yield 
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Fig. 3. Change of pressure along the channel, p, kg/m 2. 

Fig. 4. Change in the hydraulic resistance coefficient: l) moving walls; 2) one 
wall is fixed; 3) both walls are fixed. 

! 

3.2 X 

= 4B121 exp ( 2 1 x / h )  - - -  

(2], 
4 a  exp - 

Re Re h/ " rn= l  

(2.15) 

Equations (2.6)-(2.8) and (2.15) describe the laws of the change in velocity, pressure, and resistance 
coefficient, respectively, in a developed viscous incompressible liquid flow in a plane channel with moving and 
permeable walls. 

Assigning different values to the characteristic parameters U, Ul, U2, and k, we obtain all possible specific 
cases in investigation of the development of viscous liquid motion in the above statement of the problem. Thus, e.g., 

assuming k = 0 in Eqs. (2.6)-(2.14), we find the unknown quantities [3]. In the case of UI = U2 = 0 the results 
coincide with their values obtained in [4 ]. 

We will consider a numerical example with the following data: U - 1 m/sec, UI " 0.5 m/sec, /./2 = 0.1 
m/sec, h = 0.05 m, v - 10 -4 m2/sec, Pin = 100 kg/m 2, p -- 102 kg. sec2/m 4, a -- 10 -5. 

The changes in the axial velocity v x  along the length and over the height of the channel are shown in Fig. 
2. From the figure it is seen that in the upper portion of the channel from the middle line (y = 0) v x increases along 

the line, and in the lower portion it decreases; moreover, in different sections the maximum value lies at different 
heights. 

The change in pressure along the channel is shown in Fig. 3. Figure 4 presents the law of the change in 

the friction resistance coefficient ~. It is seen that in the case of fixed permeable walls the value of ~ is greater than 

for moving permeable walls (Fig. 4, curve 3). If both permeable walls move, then ~ is smaller than in the case of 

one moving wall (Fig. 4, curve 2). One observes an interesting trend: the permeability decreases friction in the case 

of moving walls and, conversely, increases it in the case of fixed walls. One other feature is worthy of note. In the 

case of impermeable walls (moving, fixed) the friction resistance coefficient decreases along the channel [3 ], 
whereas with permeable (moving, fixed) walls it increases. 

For the data selected, the length of the percolation region calculated by formula (2.15) is approximately 
equal to 20 m. 

The work was carried out within the scope of the scientific topic No. 94-670 with state financing by the 
Republic of Armenia. 

N O T A T I O N  

U, cross-sectional mean velocity of forced flow at the beT;~-;-e of the channel; UI, /-/2, velocities of the 
walls; V x ,  vy, components of flow velocity; p, pressure; p, density; v, kinematic viscosity of liquid; Pin, pressure in 

the initial section of the channel; Pex, external pressure; 2h, distance between the walls; k, coefficient of the 

permeability of the walls; 2, Laplace transformation parameter; Re, Reynolds number; ~, hydraulic resistance 
coefficient; m, n, positive integers; l, length of the percolation region. 
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